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For the calculation of the electron correlation energy, usual Koopmans one-electron energies
(used in Møller–Plesset partitioning) are replaced by energy-optimized ones to form the de-
nominators of the many-body perturbation theory. Changing these quasiparticle energies
can be interpreted as applying special level shifts to the zero-order Hamiltonian, thus it is
related to the problem of partitioning in the perturbation theory. The energy functional
chosen to be optimized with respect to the quasiparticle energies is the Rayleigh quotient
evaluated with the first-order wavefunction Ansatz, expanded up to the third order. The re-
sulting level shifts preserve size extensivity of the many-body perturbation theory.
Keywords: Many-body perturbation theory (MBPT); Level shifts; Optimized partitioning;
Effective one-electron energies; Quasiparticle energies; Quantum chemistry; Correlation en-
ergy; Configuration interaction; Hamiltonian.

Correlation in the motion of electrons in molecules is a determining factor
in diverse chemical phenomena1, and can be accounted for by various
many-body techniques. The authors whom the present paper is dedicated
to, Prof. P. Čársky, Prof. I. Hubač and Prof. M. Urban, have had an excep-
tionally important contribution to the development and application of
such theories2–12. Among several possibilities, many-body perturbation the-
ory (MBPT) offers a conceptually simple, computationally economical, and
practically reliable method in many cases.

In MBPT, one usually separates the entire many-body Hamiltonian into
two parts

H = F0 + W, (1)
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where F0 is the Fockian

F a ai i i
i

0 0= ∑ ε † (2)

with ε i
0 being the canonical (Koopmans) quasiparticle energies satisfying

the eigenvalue relation

F i i i
0 0ϕ ε ϕ= . (3)

While F0 is considered as the zero-order Hamiltonian, W, defined for-
mally as the difference between H and F0, gives rise to the perturbation.

It is well know that both the convergence features of PT and the reliabil-
ity of low-order estimations depend crucially on the partitioning13–16. The
Møller–Plesset (MP) scheme17 that corresponds to Eq. (1) is often very use-
ful, but it requires further improvements either in quasi-degenerate situa-
tions or if high accuracy of the low-order results is desirable.

A simple way of improving a given partitioning is offered by level shifts.
When repartitioning by level shifts, a diagonal operator is added to the
zero-order Hamiltonian which changes the zero-order spectrum but leaves
the zero-order eigenvectors unaffected12,18–21.

Previously22,23, we have derived an equation for optimal level shifts in
perturbation theory. The optimization was based on the Rayleigh quotient
evaluated with the first-order wavefunction Ansatz, expanded up to the
third-order in PT. The resulting method showed convergence properties su-
perior to the MP partitioning and offered highly improved second-order re-
sults. The third-order contribution was shown to be zero in the optimized
partitioning, and higher-order terms turned out to contribute little, espe-
cially at odd orders. If using the Hartree–Fock determinant as the reference
state, the second-order energy estimation was found to be equivalent to the
CEPA-0 energy. The practical usefulness of that method, however, is quite
limited as a consequence of the huge number of level shift parameters to be
optimized.

In this work, we investigate a much simpler possibility: the optimization
of the orbital energies εi, entering the PT denominators in a MP-type parti-
tioning. The number of these parameters is quite low (just the number of
basis functions), thus even if the equation determining the optimal εi’s are
complicated, the problem remains manageable.

Modifying the one-particle energies on the basis of a variational condi-
tion, as it is done in the following chapter, is closely related to a recent
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work of Lindgren24. The inspiring finding of the above study is that varying
the one-particle orbitals and requiring the stationarity of a PT estimate of
certain order, one is led to Brueckner orbitals, and Brueckner orbital ener-
gies of that particular order. The resulting orbital energies can be inter-
preted as ionization potentials. This is a very interesting result, which
involves much more free parameters in the optimization than we use pres-
ently.

THEORY

Instead of the standard MP partitioning expressed by Eq. (1), we propose

H = F + V, (4)

where F is the shifted Fockian

F = ε i i i
i

a a†∑ (5)

with the shifted quasiparticle energies

ε ε λi i i= +0 . (6)

The relation between perturbation operators W and V is simply

V W a ai i i
i

= − ∑ λ † . (7)

The unknown parameters of the theory are the level shifts λi or, equiva-
lently, the shifted quasiparticle energies εi. One of them can be kept fixed
to prevent an immaterial constant shift of the zero-order spectrum, the
number of free parameters is therefore (Nbasis – 1). Following the philosophy
of the optimized partitioning method22,23, we determine the level shifts
from the equation

∂
∂ε

[ ]
,

E E

i

2 3

0
+ = (8)

where Ep denotes the p-th order contribution to PT. Note that in the numer-
ator on the left-hand side of Eq. (8), one can equally put [E0 + E1 + E2 + E3],
which is just the Rayleigh quotient evaluated by the first-order wave-
function written out up to the 3rd order. This holds simply because the
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sum [E0 + E1], the expectation value of the total Hamiltonian, is independ-
ent of the level shifts.

Actual expression for E2 agrees with the standard MP2 formula, while E3

differs from MP3 as a consequence of the diagonal perturbation in Eq. (7),
giving rise to the term25:

−
+ − −

+ − −∑ [ || ]

( )
( ) ,

rs ab

r s a babrs
r s a b

2

2ε ε ε ε
λ λ λ λ (9)

written in spin orbitals. Indices a, b label occupied orbitals, r, s refer to vir-
tual ones, and the [12|12] integral convention is used. The double bar de-
notes an antisymmetrized integral, [rs||ab] = [rs|ab] – [rs|ba].

Having obtained the explicit functional, partial derivatives occurring in
Eq. (8) can be given in a somewhat lengthy but straightforward manner.
However, the analytical solution of the resulting equations is formidable.
Therefore, we have performed an iterative numerical solution using the gra-
dient technique with the diagonal Hessian approximation:

ε εi
n

i
n i

i

g

h
[ ] [ ]+ = −1 (10)

with the gradients

g
E E

i
i

= +∂
∂ε

[ ]2 3

(11)

and diagonal Hessians

h
E E

i

i

= +∂
∂ε

2 2 3

2

[ ]
. (12)

We used the analytical first derivatives while the second ones were evalu-
ated numerically and updated at each iteration.

Quasiparticle energies determined in this way have the property that,
given two noninteracting subsystems A and B, each of them belongs either
to system A or B. This follows from the size extensivity of the functional
[E2 + E3] and ensures that repartitioning by the corresponding level shifts
does not spoil size extensivity of the MBPT scheme. Of course, the dissocia-
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tion behavior with a closed shell (RHF) reference state will not be correct,
thus the results in this sense are not size-consistent. To achieve the latter, an
unrestricted (UMP-type) formulation would be necessary.

As to the cost of the optimization procedure, the CPU-determining step is
the evaluation of orbital gradients. It has practically the same cost as that of
the evaluation of the MP3 correction.

EXAMPLES

The present paper reports merely a few preliminary numerical results test-
ing the effect of using optimized quasiparticle energies on the correlation
energies of few-electron systems. The helium and neon atoms, the water
molecule near equilibrium, and the hydrogen molecule potential curve
serve as examples. Further numerical studies will be published in a forth-
coming paper.

The He atom was computed in the 10s2p1d basis set of Huzinaga26.
Correlation energies obtained in the Møller–Plesset partitioning are com-
pared with those with optimized orbital energies in Table I. Here the exact
basis set (full CI) energy is indicated as a reference. The improvement upon
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TABLE I
Correlation energy of He and Ne atoms and the water molecule in milihartrees as obtained
by the MP and the present optimized (OPT) partitioning in PT. For comparison, configura-
tion interaction (CI) and coupled cluster (CC) results are indicated, counting for double ex-
citations in both methods. Full CI is also included for He and Ne. The geometry of H2O is
rOH = 1.01 Å and αHOH = 104°

Method
He atom
10s2p1d

Ne atom
H2O

6-311G**
6-31G** 6-311G**

MP2 –32.24 –151.77 –227.94 –239.80

MP3 –37.27 –151.62 –227.72 –243.88

OPT2 –38.47 –151.68 –228.12 –244.88

OPT3 –38.47 –151.89 –228.11 –245.15

CID –38.31 –149.22 –223.57 –235.97

CCD –38.31 –152.94 –228.82 –246.10

FCI –38.33 –155.55 –231.79 –



optimization is dramatic: the error of the second-order result is decreased
to 0.14 mEh. For comparison, the error of MP2 is 6.09, that of MP3 is
1.06 mEh. Note that there is no difference between orders 2 and 3 in this
system, if the optimized quasiparticle energies are used. This remounts to
the theorem22 that E3 = 0 if all denominators corresponding to levels that
interact with the ground state are optimized, not just the orbital energies.

The system of Ne atom (Table I) behaves quite differently since MP2
strongly overestimates the correlation energy coming from doubles. Trying
to correct for this, MP3 predicts smaller correlation energy than MP2. Opti-
mization of orbital energies does not push the 2nd- and 3rd-order toward
CID, rather to CCD. The small difference between the optimized second-
and third-order results is again noteworthy.

The water molecule provides a similar example. Here, upon optimization,
the third-order energy differs from the CCD results merely by 0.95 mEh.

The tendency of simulating CCD results by OPT2 and OPT3 can also be
understood by the theorem found for the case of optimized partitioning,
when not only εi’s, but all denominators interacting with the ground state
are optimized22. Then, if the Hartree–Fock determinant is used as the
zero-order ground state, the second-order energy coincides with the CEPA-0
result, known also as LCCD.

The potential curve of the H2 molecule is plotted in Figs 1–3. At around
equilibrium (Fig. 1), the second- and third-order results with optimized εi’s
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FIG. 1
Potential curve of the hydrogen molecule near equilibrium in Dunning’s cc-pVTZ basis set27.
Labels MPn refer to standard n-th order Møller–Plesset theory, OPTn identify the optimized re-
sults proposed in this paper
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can hardly be distinguished form the full-CI curve. To gain a better insight,
the figure is redrawn to present the deviations from full-CI (Fig. 2). The
parallelism of OPT3 with the exact results is remarkable, showing that
practically exact force constants emerge when performing a third-order PT
calculation with optimized εi’s for this simple system.
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FIG. 2
Deviation of perturbative estimates from full CI. (Hydrogen molecule, cc-pVTZ basis27.) For
notations, see Fig. 1

FIG. 3
Long-range potential curve of the hydrogen molecule in Dunning’s cc-pVTZ basis set27. For
notations, see Fig. 1
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It is interesting to have a look on the entire potential curve plotted in
Fig. 3. Here MP2 and MP3 show the well-known divergence due to the dis-
sociation catastrophe1. The optimized PT results, interestingly, do not di-
verge but get saturated at some limit. While OPT2 strongly overestimates
the dissociation energy, OPT3 underestimates it by ca 30%. Altogether, they
provide a rough estimation giving rise to the hope that single-reference
MBPT with optimized quasiparticle energies may become convergent even
for highly stretched geometries. To check this, one has to evaluate higher-
order corrections, which has not yet been done, but is in progress in our
laboratory.

Another interesting point to investigate is whether optimizing the
quasiparticle energies in unrestricted theory improves the UMP potential
curves. We do hope this is the case.

Before closing this paper, we must add a warning statement about the
convergence features of the numerical procedure by which optimized εi’s
were produced. At present, we have not applied any acceleration procedure,
yet we were able to obtain converged results without too many difficulties.
We have noticed, however, that – while the third-order results are numeri-
cally quite stable – it is often difficult to get the second-order energies con-
verged. This might be associated with the problem that the variational
condition we use, Eq. (8), could be satisfied with more than one set of εi’s
providing the same E2 + E3 but different E2. Therefore, the second-order-
optimized results shown in this paper have to handled with some care, one
may rather rely on third-order energies.

The authors are deeply indebted to Prof. I. Lindgren (Göteborg) and Prof. I. Mayer (Budapest)
for valuable discussions. This work was supported by grants FKFP 0165/1999-0144/2000 and
OTKA 35094.

REFERENCES

1. Čársky P., Urban M.: Ab initio Calculations, Lecture Notes in Chemistry, Vol. 16. Springer,
Heidelberg 1980.

2. Čársky P., Schaad L. J., Hess B. A., Jr., Urban M., Noga J.: J. Chem. Phys. 1987, 87, 411.
3. Hubač I., Pittner J., Čársky P.: J. Chem. Phys. 2000, 112, 8779.
4. Sancho-Garcíai J. C., Pittner J., Čársky P., Hubač I.: J. Chem. Phys. 2000, 112, 8785.
5. Urban M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 4041.
6. Urban M., Sadlej A. J.: J. Chem. Phys. 1991, 95, 5490.
7. Neogrady P., Urban M., Hubač I.: J. Chem. Phys. 1992, 97, 5074.
8. Neogrady P., Urban M., Hubač I.: J. Chem. Phys. 1994, 100, 3706.
9. Urban M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 404.

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

338 Surján, Kőhalmi, Szabados:

http://dx.doi.org/10.1063/1.453585
http://dx.doi.org/10.1063/1.481493
http://dx.doi.org/10.1063/1.481494
http://dx.doi.org/10.1063/1.449067
http://dx.doi.org/10.1063/1.461829
http://dx.doi.org/10.1063/1.463828
http://dx.doi.org/10.1063/1.466359
http://dx.doi.org/10.1063/1.449067


10. Čársky P., Hrouda V., Sychrovsky V., Hubač I., Babinec P., Mach P., Urban J., Mášik J.:
Collect. Czech. Chem. Commun. 1995, 60, 1419.

11. Mášik J., Hubač I.: Collect. Czech. Chem. Commun. 1997, 62, 829.
12. Mášik J., Hubač I., Mach P.: Int. J. Quantum Chem. 1995, 53, 207.
13. Wilson S., Jankowski K., Paldus J.: Int. J. Quantum Chem. 1985, 28, 525.
14. Feenberg E.: Phys. Rev. 1956, 103, 1116.
15. Goldhammer P., Feenberg E.: Phys. Rev. 1955, 101, 1233.
16. Amos A. T.: J. Chem. Phys. 1970, 52, 603.
17. M øller C., Plesset M. S.: Phys. Rev. 1934, 46, 618.
18. Hegarty D., Robb M. A.: Mol. Phys. 1979, 37, 1455.
19. Shavitt I., Redmon L. T.: J. Chem. Phys. 1980, 73, 5711.
20. Kaldor U.: Int. J. Quantum Chem. 1985, 28, 103.
21. Alexandrov V. I., Zaitevskii A. V., Dementev A. I.: Chem. Phys. Lett. 1993, 218, 206.
22. Surján P. R., Szabados Á.: J. Chem. Phys. 2000, 112, 4438.
23. Szabados Á., Surján P. R.: Chem. Phys. Lett. 1999, 308, 303.
24. Lindgren I.: Int. J. Quantum Chem. 2002, 90, 294.
25. Surján P. R., Szabados Á.: Int. J. Quantum Chem. 1998, 69, 7123.
26. Huzinaga S.: J. Chem. Phys. 1965, 42, 1293.
27. Dunning T. H., Jr.: J. Chem. Phys. 1989, 90, 1007.

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

Optimized Quasiparticle Energies 339

http://dx.doi.org/10.1135/cccc19951419
http://dx.doi.org/10.1135/cccc19970829
http://dx.doi.org/10.1103/PhysRev.103.1116
http://dx.doi.org/10.1103/PhysRev.101.1233
http://dx.doi.org/10.1103/PhysRev.46.618
http://dx.doi.org/10.1063/1.440050
http://dx.doi.org/10.1016/0009-2614(93)E1441-I
http://dx.doi.org/10.1063/1.481006
http://dx.doi.org/10.1016/S0009-2614(99)00647-8
http://dx.doi.org/10.1002/qua.944
http://dx.doi.org/10.1063/1.456153

